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This paper explores what cyclic trajectories are possible within the limits of known laws of physics and practical propulsions
systems for a spacecraft or world ship that could travel between the Sun and the near stars periodically. Because of the long
durations, the spacecraft is assumed to be massive to house many people for many generations. The spacecraft is initially
accelerated up to speed at great expense but from then on only minimal propulsion is assumed to be available for course
corrections. The spacecraft, as it nears a star, follows a hyperbolic trajectory. The spacecraft returns by using gravity to
“swing” around each of three or more stars, one of which is the Sun. The minimum distance of closest approach found during
the flyby was 3 Sun radii, where the heat flux of 7 MW/m2 was shielded from the spacecraft by a radiation-cooled shield made
of a porous woven carbon fiber whose peak temperature was about 2500 K. A thin sheet of graphite by contrast would have a
temperature of 2800 K and high evaporation mass loss rate. The coasting speed was found to be 115 km/s or 0.0004c. The
minimum period found for this class of trajectory was about 41,000 years for a trip around three stars with a 16 light-year
closed path and about 57,000 years for four stars with a 22 light-year path length. If an order of magnitude more heat flux
could be handled somehow, then the spacecraft could just skim the surface of the Sun (200 km/s or 0.0007c) giving a minimum
cycle time of 24,000 years for three stars and 33,000 years for fours stars.

Keywords: Cycling interstellar spacecraft, cyclic interstellar orbits, minimum travel time interstellar orbits, world ship cyclic
trajectory

α = interior half-angle of hyperbola, (see fig.1)
a = semi-major axis (see fig. 1)
AU = distance from earth to Sun=1.50 x 1011m=500 light-sec
A = absorbtivity
c = speed of light= 3.00 x 108 m/s
∆ = deflection angle (see fig. 1)
ε = eccentricity (see fig. 1)
E = emissivity
Ecohesive = energy to heatup and evaporate (MJ/kg)
G = 6.672 x 10-11m3kg-1s-2

2
2 ( / )

4
H solar flux W m

r
ϕλ

π
= =

h = (non) impact distance (see fig. 1)
J = evaporation rate (kg•m-2•s-1)
k = constant of motion = 2 x total energy per unit mass
L = angular momentum per unit mass
1 Light-year = 9.5 x 1015m = 6.3 x 104AU

λΘ = 3.92 x 1026 W = total solar radiation
MΘ = 2.00 x 1030kg = mass of the Sun
M⊕ = 6.0 x 1024kg = mass of the Earth
µ ≡ GMΘ = 1.33 x 1020m3/s2

σ = Stefan-Boltzmann constant = 5.67 x 10-8 Wm-2K-4

p = semi-latus rectum (see fig. 1)
q = total solar flux during time spent in high heat flux

polar angle
d
dt

Φ =
Φ

Φ =

φ∞ = 180°-α (see fig. 1)
RΘ = 6.96 x 108m = 4.64 x 10-3AU = radius of the Sun
rp = distance of closest approach on a flyby at perigee
r = radius, m
tH = time spent in high heat flux
v∞ = speed during coast period between stars
vp = speed at perigee

Notation List

1. INTRODUCTION

This paper explores what cyclic trajectories are possible for
travel between the Sun and the near stars. The spacecraft is
assumed to be very massive in order to house a large number of
people for many generations. Owing to the long duration of
such a spacecraft flight it will have to be a fully functional and
self-contained “world” and therefore has been called a “world

ship” [1]. The spacecraft is initially accelerated up to speed at
great expense but from then on only minimal propulsion is
assumed to be available for course corrections because of its
large mass. The spacecraft, as it nears a star, follows a hyper-
bolic trajectory as shown in fig. 1. The spacecraft returns by
using gravity to “swing” around each of three or more stars in
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the circuit, one of which is the Sun as shown in fig. 2. If there
are three stars in the circuit, a deflection of 120° on average for
each passage is required and 90° for a four-star case. To get a
deflection this large requires a close encounter flyby. During
the flyby of a few hours the heat flux is large and the spacecraft
must be shielded to prevent overheating. To get shorter cycle
time requires higher speeds that in turn require a closer encoun-
ter in the flyby with a higher heat flux to get the same deflec-
tion. So there is a trade-off between cycle time and heat shield-
ing, which is the subject of this paper. The concept of cycling
space ships between planets similarly has the goal of minimiz-
ing propulsion requirements [2].

2. TRAJECTORIES NEAR THE SUN

This section analyzes the trajectory of a spaceship as it passes near
the Sun. In particular, it focuses on unbound trajectories that are
deflected by the Sun’s gravity, but then return to outer space.

A treatment by Szebehely [3] using standard notation common
in celestial mechanics texts is used. Total energy per unit of mass,
(1/2)k, is a constant of the motion because the gravitational force is
derivable from a potential. The angular momentum per unit mass,
L, is also a constant of the motion because the force is directed
toward the center and exerts no torque on the spaceship. In polar
coordinates, these two conservation equations are:

( )22 22k r r and L r
r
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Fig. 1. Hyperbolic trajectory around a star. Fig. 2. Hyperbolic trajectories around three stars.

Substituting u=1/r gives:
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Where µ ≡ GMΘ = the gravitational constant times mass of
the star (Sun). With r=1/u, this becomes:
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Here, a = µ/k is the semi-major axis (See Fig. 1) and the
distance of closest approach is rp  = a(ε - 1). These equations
define a hyperbola when ε > 1, and of an ellipse when ε < 1.
Therefore, positive total energy, k > 0, results in a hyperbolic
trajectory with k = v∞

2 = µ/a and r → ∞ when φ → φ∞ = cos-1(-1/
ε). A related parameter is the (non)impact parameter, h = aε sin
φ∞ (See Fig. 1). The parameter, h, is important because it
should be measurable and controllable by course correction
propulsion from within the spacecraft, and h and v∞ determine
φ∞. The angle swept out by the spaceship as it passes a star is
the deflection angle ∆ shown in fig. 1. ∆ = 180°-2α.

At perigee (the distance of closest approach),

( )0, 0, 1
1P

pr and r r aφ ε
ε

= = = = = −
+
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Also at perigee, using the conservation of energy
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It is at perigee, the point of closest approach, that the heat
load might be a problem. The heat flux at distance rP from the
center of the Sun is H = λΘ/(4 π rP

2), and the time spent in this
high heat flux is approximately tH ≈ π rP / vP. Therefore, the total
heat load per unit of area, q, is q = H tH ≈ λΘ/(4 rP vP) = λΘ/(4 h
v∞), since rP vP = h v∞ = L, the angular momentum about the Sun
per unit of mass.

To illustrate the calculations required, an example is given.
Choose v∞ = 0.0003 x c = 1.0 x 105 m/s and rP = 3 x RΘ = 2.09
x 109 m.

Calculate k = v∞
2 = 1.0 x 1010m2/s2, a = µ/k = 1.33 x 1010m,

vP
2 = v∞

2 + 2m/rP = 1.37 x 1011 = (3.73 x 105 m/s)2, and ε = 1 +
rP/a = 1.16. This value of ε gives f∞ = cos-1(-1/ε) = cos-1(-0.866)
= 150°. That is, the full interior angle of the hyperbola is 2 x 30°
= 60°. The deflection angle is 120°, requiring three star en-
counters to complete a roundtrip.

The heat flux at distance rP from the center of the Sun is H =
λΘ/(4 π rP

2) = 7.4 MW/m2 for rP=3 Sun radii. The time spent in
this high heat flux is approximately tH ≈ π rP/vP = 4.8 hr, which
results in about 1.3 x 1011 J/m2 incident on the ship. The results
are given in Table 1, case No. 1, where the units are: velocity
(km/s), distance (1010 m), angle (°), Heat flux (MW/m2), time
(h), and Total Heat (1010 J/m2).

These heat fluxes, H, can be compared to some practical
cases. First, the maximum on earth is 1.39 x 103 W/m2. Second,
water-cooled copper heat dumps for high power ion beams can
tolerate 5 x 106 W/m2 in steady state. And, third, radiatively
cooled tungsten wires immersed in an ion beam will rise to a
temperature of about 2000°C when the beam deposits about 1 x
106 W/m2 on their projected surfaces. Cases 2 and 3 in Table 1
result in heat fluxes that are too high to be tolerated even for
some of the rather short times, tH. The ability to shield against
heating while in near passage with a star is discussed in Section
5, where Case 4 is shown to be practical. The Case 4 trajectory
is shown to scale in figs. 1 and 2.

The time in years for the spaceship to travel 1 light-year is t
= c/v∞, where c = 300,000 is the speed of light in these units or
a few thousand times our speed of 115 km/s. It would take
twelve thousand years for the spacecraft to travel to even the
nearest stars, the Alpha Centauri triplet, which are 4.3 light-
years away.

In section 2.1, we treat examples of cycling around four
stars, one being the Sun; in section 2.2, three stars and in
section 2.3, the general case of the deflection angle for stars of
various mass and luminosity type.

2.1 An Orbit Around Four Stars

A spaceship with speed of a few 10-4 times  c must pass close to
a Sun-like star in order to be deflected by even as much as 120°
(a=30°). Such a close encounter with a star would cause severe

TABLE 1: Hyperbolic Trajectories.

No. v∞∞∞∞∞ h/RΘΘΘΘΘ rP/RΘΘΘΘΘ vP ∆∆∆∆∆ εεεεε a H tH q

1 100 11 3 373 120 1.16 1.3 7.4 4.8 13
2 198 3.3 1 649 112 1.21 0.34 64 0.94 22
3 140 7.6 2 459 112 1.21 0.68 16 2.6 15
4 115 9.8 3 375 112 1.21 1.01 7 4.9 13

heat problems, and any triangular orbit around any of the near
stars would require at least one deflection of about 120°. For
that reason we looked for 3 nearby stars that, along with the
Sun, form a small near-regular quadrilateral as shown in Fig. 3.

All of the 12 stars that lie within about 10 light-years from
the Sun lie within ±7.7° of a plane (RA=17.7°) that includes the
Sun. This surprising fact allows us to ignore the small
displacements out of the plane, and to plot them on that plane
and look for the smallest quadrilateral that contains no internal
angle as small as 60° (α = 30°) as shown in Table 2 and fig. 3.
The smallest angle is the Sun’s at 34°. The 4 stars - our Sun, α
Centauri A, Sirius A, and Wolf 359 – define the smallest good
orbit. The total path length is 21.7 light-years, which means that
the period of the orbit would be 57,000 years for a spaceship
traveling at 115 km/s (0.00038 times the speed of light) and
passing the Sun at about 3 Sun radii at closest approach (case 4,
Table 1). In section 5, a practical heat shield is discussed for
case 4, Table 1 at 3 Sun radii during the 5 hours of passage
close to the Sun. If the spaceship just skimmed the Sun’s
surface [case 2, Table 1] (clearly a limiting case of extreme heat
shielding), the speed would be 198 km/s (0.00066c) and the
roundtrip time would be 33,000 years.

In reality, the relative motion of the stars needs to be ac-
counted for, including the speed increment to our spacecraft on
each passage. However, in order to arrive at an approximation
to the roundtrip time in all cases, the relative motion between
stars is ignored for the present work. Course corrections are
made to adjust the distance of closest approach, rp by measur-
ing h, and the angle α, appropriate to each pair of stars as
shown in fig. 2.

2.2 An Orbit Around Three Stars

Using 3 stars as shown in fig. 2, one being the Sun, the other
two being white dwarfs we get a shorter path length. For Sun-
Proxima-Barnard’s Star we have a path length of 15.6 light
years and a speed of 113 km/s giving rp=3 Sun radii, the cycle
time is 41,000 years. The path including the Sun, Proxima and
Alpha Centauri is precluded as it requires close to 180° deflec-
tion angle on the solar flyby.

If we consider three white dwarfs not including passage by
the Sun, for example, Barnard’s Star-Proxima-Sirius B, we
have a path length of 15.7 light years. The small angle at
Proxima of alpha = 35.5° gives v∞ = 162 km/s with rp = 0.035
RΘ and a cycle time of 29,000 years. The radii of these white
dwarfs are small, and the energy given off is small enough that
the radiation shield discussed later is less demanding than to
pass 3 radii from the Sun.

2.3 Deflection Angle for Various Stars

The equations have been solved from the point of view of a
navigator who wants to plot a course. He can pass close to a low
luminosity star either just skimming the surface if the heat flux
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is less than 7 MW/m2 or out to a radius such that the heating is
about 7 MW/m2 that can be handled by the heat shield, as will
be discussed in Section 5. Using the mass, luminosity and
radius of the near stars one solves for the deflection angle
versus v∞ [4]. Remember the average deflection angle needed
for a roundtrip for three stars is 120° and for four stars is 90°.

The deflection angle is derived from Eq. 2.5 and 2.6:

1
2
1180 2 cos

1

o

pr v
m G

−

∞

 
 

− ∆ = − + ⋅
 ⋅
 +

⋅ 

(2.9)

Notice the trajectories are self-similar as long as the ratio rp/m is
the same, where m is the mass of the star. The results are plotted in
fig. 4 for the closest approach, set by skimming the surface or
maximum heat load of 7 MW/m2, whichever is larger. The ratio of
Rp/m is given in units of Sun radius and Sun mass.

Fig. 3  Trajectory around four stars with a round-trip period of 57,000 years.

TABLE 2:  Location of the Closest Stars.

Star Dist.(ly) RA(°) Dec.(°) Class AbMag x (ly) y (ly)

Sun  0  0  0 G  4.8  0  0
Proxima  4.2 21.75 -62.7 M 15.5 1.93 -3.73
α Centauri A  4.4 22.0 -60.8 G  4.3 2.15 -3.84
α Centauri B  “  “  “ K  5.7  “  “
Barnard’s Star  5.9 27.0  +4.7 M 13.2 5.88 +0.48
Wolf 359  7.8 16.5  +7.0 M 16.6 7.74 +0.95
BD+36°2147  8.3 16.5 +36.0 M 10.5 6.71 +4.88
Sirius A  8.6 10.1 -16.7 A  1.5 8.24 -2.47
Sirius B  “  “  “ DA 11.3  “  “
Luyten 726-8 A  8.7  2.5 -18.0 M 15.4 8.27 -2.69
Luyten 726-8 B  “  “  “ M 15.8  “  “
Ross 154  9.7 28.3 -23.8 M 13.0 8.88 -3.91
Ross 248 10.3 35.6 +44.2 M 14.8 7.38 +7.18

These examples are low luminosity white dwarfs except for
the Sun. Sirius-B being simultaneously low luminosity and
small radius results in the largest deflection. If low radiation
(<7MW/m2 at perigee) neutron stars or black holes were avail-
able, large deflections could be obtained.

3. HOW MUCH DOES IT COST TO
ACCELERATE MASS TO A SPEED V AND

HOW LONG DOES IT TAKE?

How much does it cost to accelerate mass to a speed of 115 km/s or
3.8x10-4 times the speed of light, which is the assumed speed in
calculations used elsewhere? A spaceship where people live for
thousands of years has to be a fully functional “world”, a world
ship. The mass must be much more than a ton per person, the mass
of an ordinary car. Let’s suppose the mass is 10 tons per person. To
get the spaceship up to speed, use of a mass beam [5] is assumed.
Other propulsion methods such as nuclear-pulsed propulsion are
possible. Small masses are accelerated toward the spacecraft from
space-based beam projectors with their independent power sta-
tion. These then seek the center of a laser beamed both from the
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target spacecraft and from the mass beam projector rather than
spread out [6]. The masses are vaporized and/or ionized as they
approach the spaceship and made to “bounce” off a reflector (a
physical or magnetic “sail”). The beam velocity is gauged so that
the reflected mass is left with negligible kinetic energy in the solar
frame of reference–the kinetic energy of the beam having been
efficiently transmitted to the spacecraft. In other words the jet
efficiency is assumed ideal at 100%. Suppose power-limited elec-
tric propulsion is used and the expellant mass is externally sup-
plied. The mass beam projector, its power supply and source of
mass would be space based.

2( )dV dmF M v V
dt dt

= = − (3.1)

where M is the fixed mass of the ship and V is the spaceship
speed and v is the variable exhaust speed. We will assume the
ideal case of elastic rebound where v=2V. A lesser value will
increase the required beam power and require heat dissipation
on the spacecraft.

2v V=

= mass flow ratedmm
dt

= (3.2)

21 (2 ) = power in the flowing mass
2

P m V= (3.3)

.

22( ) 2 ,
2

dV PF M v V m V or MVdV Pdt
dt V

= = − = = (3.4)

Integrating, assuming P = constant.

21
2

E MV Pt= = (3.5)

Using Table 1 case 4 example of v∞=115 km/s

2 5 2

9

1/ / / 0.5 (1.15 10 )
2

6.6 10 /

E M MV M Pt M

J kg
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= ⋅
(3.6)

Fig. 4  Deflection angle versus speed, v∞∞∞∞∞.

The cost, assuming a cost of electricity typical of bus bar
cost of 0.05 $/kWh and an efficiency of electricity to accelera-
tion is 1/3, is given next:

91 6.6 10 / 0.05$ // 270 $ /
1/ 3 1000 3600 /W

kW

J kg kWhCost M kg
s h

⋅ ⋅
= ⋅ =

⋅

(3.7)

Owing to the ideal assumptions on elastic rebound and other
assumptions, the actual cost will be considerably higher. For
comparison, the cost per unit mass into low earth orbit today in
the shuttle is about $20,000/kg or almost 100 times more. If
each person needs 10 tons, then the cost would be 2.7´106 $/
person and $27 billion for the 10,000 population. This is about
the cost of the Apollo moon project for propulsion alone. For
comparison, World War II cost the US about $4.3 trillion.
Clearly, there will be incentives to economize on mass per
person and efficient acceleration tricks such as using the grav-
ity “slingshot” effect commonly used by NASA even today
where an increment of velocity up to that of the object of the
flyby is picked up.

The time to accelerate is:

21
2

MV
t

P
= (3.8)

The power supply is assumed to be space based but some
course correction power on board is needed as well as for
running the society (lighting, heating, agriculture, communica-
tions, etc). Suppose the power source on board supplies power
at 1 kW/kg (including all the mass of the ship and its expellant),
which might be an upper limit of technology, then the time to
accelerate is

2
9

7

1
6.6 10 /2 2.0 10 0.62

1,000 / 0.333

MV J kgt s years
P W kg

⋅
= = = ⋅ =

⋅

(3.9)

If each person needs 10 tons of mass, then each person’s
pro-rated power would be 10 MW per person. For a spaceship
of 10,000 people, the total power would be 100 GW for the 10
tons per person case. This power is very large and can be
decreased by prolonging the acceleration period from the 0.62
years to 62 years, for example, which would lower the power to
a more practical 1 GW for the 10-ton case. This would be a
practical 10 W/kg or 100 kW per person.

What expellant mass is needed to propel the ship? For
constant P, the rate that mass must be supplied is

2 42
P Mm

tV
= = (3.10)

This expellant mass is supplied to the rocket at the time it is
needed at speed V. (Note that m —>∞ as t——> 0.)

Integrate to find the total expellant mass:

0
, or ln

4 4
M M tdm dt m

t t
= =∫ ∫ (3.11)
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This expression shows it takes a lot of expellant mass to get
the spaceship started but m  decreases rapidly as V increases,
although P remains constant. The time to accelerate to the
intermediate speed of 7 km/s, which is 2x 10-5 c, is 56 hr at the
lower power of 1 GW. For comparisons, the approximate speed
of a low earth orbit is 7 km/s (2x10-5 c) and speed of the earth
around the Sun is 30 km/s (10-4 c) and 42 km/s to escape the
Sun’s gravity from earth’s position. Using 56 hr for t0, the
expellant mass needed to accelerate to 115 km/s (3.8x 10-4 c) in
62 y is M/4xLn(100) =1.15 M. Again, this shows that it will be
important to economize on expellant mass, especially in the
early stages of acceleration. We must add a small amount to the
above estimates of power cost and expellant mass needed to
escape the Sun’s gravity.

4. COURSE CORRECTIONS

The next question is, what is the amount of course correction
practical with onboard power?

Assume that the correctional thrust is at right angles to the
direction of travel so that no speed change occurs. Also assume
that the expellant used is small compared to the ship’s mass.

mt M<<

jet
dVF M v m
dt

= = (4.1)

Where dV is the resultant perpendicular velocity, and vjet is
expellant mass speed relative to the ship.

jetM V v mt∆ = (4.2)

21
2 jetmv Pη= (4.3)

Where now P is the power consumed to produce the steering
jet.

21
2

21 1
2 2

jet jet

jet
jet

v mt mv tV P t
vV MV MV v MV
V

η∆
= = =

(4.4)
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V W y s y
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⋅ ⋅ ⋅

(4.5)

When vjet=V and efficiency is 33%.

For 10 tons/person, 10,000 people, and 100 MW power for
100 years, this corresponds to a deflection of 9° for a 100-year
“burn” course correction. The course corrections should be
much smaller than this. The mass expended in this assumed 9°
correction is:

8 7

2 5 2

7

2 2 0.33 10 100 3.15 10 /
(1.15 10 / )

1.6 10 16,000
jet

P W y s ym t t
v m s

kg tons

η × × × × ×
= =

×

= × =

(4.6)

3
4

4 4
16 10 1.6 10

10 10
mt
M

−×
= = ×

×

The mass used for steering is much smaller than M.

For 50 MW power, 0.01V
V
∆

= and

 4 52.2 10 1 10
20

mt
M

− −= × = ×

which might be adequate for course corrections and uses negli-
gible mass as expellant.

A correction that brings the ship back to the star from which
it just came would require

V
V
∆

=2

Rather than 100 MW for 1000 years, we would need (2/0.16=13)
13 times this much rocket power or duration. The expellant
mass would still be small. The point to be made here is the
impracticality of speeding up then slowing down for the flyby
with such a massive space ship in order to reduce significantly
the cycle time.

5. RADIATION SHIELDING FROM THE
SUN DURING FLYBY

The spacecraft will need shielding from the Sun’s (or star’s)
electromagnetic radiation during the close encounter flyby.
One way to do this is put up an umbrella-like thin sheet between
the Sun and the spacecraft. The solar flux will intercept the
shield, which in turn radiates from both sides. Then the space-
craft can be located some distance away in the shadow. If this
reduction is not enough, another shield can be imposed to
successively reduce the heating to any desired value, and is
only limited by the weight of the shields. The limiting technol-
ogy then is for the first shield to survive. We do not discuss
shielding from stellar particle emissions during flare events,
which could coincide with stellar flybys.

A NASA project called Solar Probe planned to use a graph-
ite shield for flyby at four Sun radii [7]. The heat shield is
discussed in several reports with emphasis on temperature
limits set by radiation and evaporation [8, 9].

The total solar flux is 3.92x1026 W and the Sun’s radius ro is
6.96x108 m. The solar flux is then 64.4 MW/m2 at the surface
and falling as (ro/r)

 2.

The input power from the incident solar flux must be bal-
anced by radiation from the thin disk of a shield assuming total
absorption. The radiation formula is:

4P T
A

σ=Ε (5.1)

The emissivity E is a property of materials, σ is the Stefan-
Boltzmann constant (5.67x10-8 Wm-2K-4) and T is temperature
of the surface in Kelvin.

The temperature of the surface of the shield is then:
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1/ 421
2

orPT
A rσ

   =  Ε   
(5.2)

where the factor of 2 comes from radiation from both front and
back. The emissivity is given from Kohl (p.165 and 274–p.158)
[10] and plotted in fig. 6. The results show why graphite is the
best of the candidate shield materials.

Radiation power using the data above and Eq. 5.1 is plotted
in fig. 7. The arrows show the maximum practical temperature
where loss of strength occurs; the curves end at the melting
temperature.

The results of Eq. 5.2 are plotted in fig. 8.

There is a decided advantage in using graphite because of its
high emissivity. The distance of closest approach for graphite
would be 3 Sun radii and a little over 4 for tungsten.

The temperature of carbon fibers is limited by evaporation
from the solid (sublimation). The theoretical evaporation rate is
given by the expression

0.517.14 ( / )
PJ
T M

=
⋅ (5.3)

Fig. 5  Umbrella-like shadow shield from solar radiation (not to
scale). The upper version shows a schematic of the idea and the
lower one shows a perspective view.

Fig. 6  Emissivity versus temperature.

Fig. 7  Calculated radiated power.

/A B TP e −= (5.4)

where P is the vapor pressure in Pascals, T in Kelvin, M is mass
per mole, which for carbon is 0.012 kg and J is in kg/m2s. A
reasonable fit to the data for vapor pressure from Kohl [10] for
electrographite is A=37.5 and B=99,500. The sublimation rate
from Ref [7,9,11,8] for the Solar Probe was taken as 0.0015
mg/m2s at 2204 K and 0.0046 mg/m2s at 2242 K. They note that
sublimation rates were measures “…. about an order of magni-
tude lower than for graphite presumably due to surface energy
effects…” of fibers.

The surface material loss rate is J/ρ in units of m/s. The
density of graphite is about 1400 kg/m3. We plot in fig. 9 the
theoretical loss rate based on measured vapor pressure from
graphite in units of micrometers/hr. Also shown are two meas-
ured loss rate data points and the theoretical curve adjusted to
pass through the measured points (dashed curve).
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Based on use of fibers of tens of microns thickness and a few
hours exposure time, the temperature is limited to about 2600
K.

A somewhat higher heat flux is tolerable if the shield is made
of fabric, which is the most likely construction material any-
way. A thin porous weave would expose single fibers to the
incident flux proportional to its diameter, but it radiates from its
perimeter, or 3.14 times its diameter, compared to a disk of
twice its diameter for both sides. Thus a factor of up to π/2 can
be put into Eq. 5.2. Adjacent fibers will shield each other
somewhat, so this correction would have to be reduced. The
same temperature will be reached at a reduced radius by a
factor of (π/2)0.5, which is 1.25. At the same radius, the tem-
perature would be reduced by 12%. Use of fibers can make a
flat surface of 2800 K become 2500 K. The shield could be
tilted to spread the heat load over more area. For example,
tilting 60° from that shown in fig. 6 would reduce P/A in Eq. 5.2
by a factor of 2 giving a temperature reduction of 19%.

A practical fabric might be woven from fibers of 10-µm
diameter. If the weave were equivalent to a single layer side by
side touching, then the mass would be:

2

3 24 10 3400 / 0.0267 /
4 4

D L
D m kg m kg m

D L

π ρ π πρ µ= = =

(5.5)

A 100-m radius shield would then have a mass of 840 kg.

If a carbon fiber shield of 100 m radius were radiating at
2500 K appropriate to three Sun radii or about 3 MW/m2 from
each side, then the radiant flux on the spacecraft would be

2

2 2
100 3 7500
4

P MW
A x x

π
π

= = (5.6)

where x is the distance from the shield to the spacecraft and xo
is a typical distance taken here to be 100 m.

2
20.75 / oxP MW m

A x
 

=  
 

(5.7)

For example, at 500 m, the flux rather than being 7 MW/m2

from the Sun would be only 0.03 MW/m2 or a factor of 100
reduction. A second shield could further reduce this heat load.

The Solar Probe [7] planned to fly by the Sun at 4 Sun radii.
The present work is consistent with the Solar Probe work. A
somewhat higher temperature owing to 3 Sun radii apogee is
allowed because a 100 times higher evaporation rate is allowed
during the flyby.

5.1 Ablative Shield

The flux at three solar radii (Case 4 of Table 1) peaks at 7 MW/
m2 and the total energy is 1.3x1011 J/m2 during the flyby. This
can be handled using a two-sided radiation shield made of
carbon fibers. For higher heat fluxes, consider an ablative
shield similar to that used to shield re-entry vehicles. The
cohesive energy of carbon is about 100 MJ/kg to heat up to
about 3000 K from near zero and then to evaporate. For a 100
m radius shield the amount of material evaporated during a
flyby of the Sun would be:

11 2 2 2
7

6
1.3 10 / 100 4.1 10

100 10 /
J m m kg

J kg
π× × ×

= ×
× (5.8)

The assumed spacecraft’s mass is 108 kg (10,000 people x 10
tons per person) so this loss on each pass would be 40% of the ship
mass. This is too much but could be cut down by designing a
smaller radius ship. For example, a radius as small as 10 m might
be a limiting case that would result in an ablated mass on each
flyby to 0.4% of the ship’s mass. For comparison our earlier
radiative shield of mass 840 kg was only 10-6 of the ship mass. The
ablative shield is possible but much more massive than the radiative
shield and therefore considered impractical.

A more in depth analysis of ablation (evaporative) cooling
can be seen from a power balance. The input power to the
shield is the solar flux that is balanced by radiation cooling and
evaporative cooling. See fig. 10 for the relative strength of each
cooling process.

Fig. 8  Calculated temperature of the shield normal to the Sun
versus distance from the Sun.

Fig. 9  Evaporative loss rate of the carbon fiber shield versus
temperature.
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42 2 cohesiveH A T Jσ⋅ = Ε + Ε (5.9)
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The factor of two in Eq. 5.9 accounts for two-sided radiation
and evaporation.

6. DISCUSSION OF SITCHIN’S HYPOTHESIS

This study started with speculation as to whether periodic
visitations to the solar system as proposed by Sitchin [12],
could be the result of cycling interstellar ships. In his book
“The 12th Planet,” Sitchin [12] proposed that the earth had been
visited by extraterrestrial life on a cyclic basis every 3,600
years. The cycle was the result of the orbit of their planet. The
present analysis was initiated partly to see how this might be
possible. The first possibility examined was elliptic orbits like
comets and planets. A period of this duration means the turna-
round point is 230 AU (one AU is the distance from the earth to
the Sun) from the Sun or six times further than the distance to
Pluto. This is difficult to understand with our current under-
standing of solar system evolution. If we extend Sitchin’s idea

to include artificial habitats of the sort featured in the Arthur C.
Clarke novel “Rendezvous with Rama” [13] and discussed as
world ships by Martin [1] it would be more understandable.
This second possibility examined was cyclic orbits to the near
stars. However, as already discussed, the shortest cycle time
found was 41,000 years with a realistic heat shield, and this
only reduces the cycle time to 24,000 years if the Sun’s surface
is just skimmed with some futuristic heat shield during the
flyby. So the present analysis is off by about an order of
magnitude from explaining the 3,600-year period proposed by
Sitchin.

7. DISCUSSION AND CONCLUSIONS

Cyclic trajectories were found that would return a large space-
ship to the solar system periodically with minimal propulsion
for course corrections only. The cycle time was 41,000 years
for a course including three stars and 57,000 years for four
stars. The cycle time was determined by fairly hard require-
ments: distance of closest approach, which was about 3 Sun
radii on the flyby, set by radiation cooling and the need to have
a cumulative deflect of 360°, which was on average 90° for
each of 4 flybys of the nearest four stars in the circuit or 120°
for three stars.

The maximum deflection required was the Sun encounter of
112°. The assumption of distance of closest approach to the star
on flyby (about three Sun radii) is based on one design of
shielding using radiation cooling at 7 MW/m2. A better shield
design would allow closer approach. The smallest distance of
closest approach–skimming the surface of the Sun–would
shorten the roundtrip to 24,000 years for three stars and 33,000
years for the four star case. This closest approach distance
would result in a heat flux of 60 MW/m2, making for a difficult
shielding problem. However, owing to a shorter exposure time
the energy to be absorbed is only twice that at 3 Sun radii.

The cycle times might be prohibitively long from the human
viewpoint. However, space-faring civilizations evolving on plan-
ets circling widely-separated members of multiple-star systems
or living in galactic regions of higher stellar density might well
apply the techniques described in this paper.
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Fig. 10  Radiation and ablation cooling versus temperature.
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