Fission-suppressed fusion, thorium-cycle breeder and nonproliferation

R. W. Moir¹

¹ Vallecitos Molten Salt Research, Livermore, CA 94550
ralph@ralphmoir.com

ABSTRACT

Fusion reactors can be designed to breed fissile material for startup and makeup fuel for fission reactors while suppressing fissioning, thereby enhancing safety. Each fusion reaction can release about 2.1 times the 14 MeV neutrons' energy in the blanket in this fission-suppressed design while producing 0.6 fissile atoms, which is 2660 kg/1000 MW of fusion power for a full power year. The revenues would be doubled from such a plant by selling both fuel at a price of $60/g and electricity at $0.05/kWh for Q=Pfusion/Pinput=4. Fusion reactors could also be designed to destroy fission wastes by fissioning, but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal is already accomplished with fission reactors; however, fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the fission blanket zone. Fusion is unique compared to fission in having all its high-energy 14 MeV neutron can generate up to 0.05 ²³²U atoms for each ²³³U atom produced from thorium, about twice the IAEA standards of “reduced protection” or “self protection.”

I. INTRODUCTION

Mixing ²³³U with ²³⁹U can enhance nonproliferation. Also nonproliferation is enhanced in three typical fission-suppressed designs [1] by generating up to 0.05 ²³²U atoms for each ²³³U atom produced from thorium, about twice the IAEA standards of “reduced protection” or “self protection” set at a dose rate of 100 rem/h (1 Sv/h) 1 m from 5 kg of ²³³U with 2.4% ²³²U one year after chemical separation of daughter products [2]. With 2.4% ²³²U, high explosive material is predicted to degrade owing to ionizing radiation after a little over ½ year. The heat rate is 77 W just after separation and climbs to over 600 W ten years later.

The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) [3] also called liquid fluoride thorium reactors (LFTR) [4] because the molten fuel does not need hands on fabrication and handling that otherwise would be expensive owing to the 2.6 MeV gamma emission.

A fusion system can produce unusually large quantities of fissile material, for example ²³³U from thorium, because the 14 MeV neutrons can be multiplied to give the extra neutrons needed. A nonproliferation feature of thorium, and one of the reasons it has not been desired for making nuclear weapons, is partly because the contaminant ²³²U that comes along with making ²³³U, has a strong gamma ray associated with its daughter products. Reactions leading to ²³²U need neutrons well above approximately 6 MeV threshold. Fusion is unique compared to fission in having all its source neutrons produced at 14 MeV, well above the 6 MeV threshold for producing ²³²U whereas fission has less than 3% of its neutrons above 6 MeV as shown in Fig. 1.

![Fig. 1. Neutron source spectra for fission and fusion.](image)

II. PRODUCTION OF ²³²U AND ²³³U

²³³U is produced in the following reaction.

\[n^{232}Th \rightarrow ^{233}Th \rightarrow ^{233}Pa + e^- \rightarrow ^{233}U + e^- \]

The reaction paths that lead to ²³³U and ²³²U are shown in Fig. 2.

![Fig. 2. Reaction paths that lead to ²³³U and ²³²U](image)
Four routes to producing ^{232}U shown in Fig. 2 are enabled by the three threshold reactions whose cross sections are shown in Fig. 3 and in the following two-step reactions:

1. $n + ^{232}\text{Th} \rightarrow ^{233}\text{Th} \rightarrow ^{233}\text{Pa} + e^-$
 \[n + ^{233}\text{Pa} \rightarrow 2n + ^{232}\text{U} + e^- \quad \text{(fast-neutron reaction)}\]

2. $n + ^{232}\text{Th} \rightarrow ^{233}\text{Th} \rightarrow ^{233}\text{Pa} + e^- \rightarrow ^{233}\text{U} + e^-$
 \[n + ^{233}\text{U} \rightarrow 2n + ^{232}\text{U} + e^- \quad \text{(fast-neutron reaction)}\]

3. $n + ^{232}\text{Th} \rightarrow 2n + ^{231}\text{Th} \rightarrow ^{231}\text{Pa} + e^-$
 \[n + ^{231}\text{Pa} \rightarrow ^{232}\text{Pa} \rightarrow ^{232}\text{U} + e^- \quad \text{(fast-neutron reaction)}\]

Other reactions ending in ^{232}U are possible, such as the following three step-reactions:

4. $n + ^{232}\text{Th} \rightarrow 3n + ^{230}\text{Th}$
 \[n + ^{230}\text{Th} \rightarrow ^{231}\text{Th} \rightarrow ^{231}\text{Pa} + e^-\]
 \[n + ^{231}\text{Pa} \rightarrow ^{232}\text{Pa} \rightarrow ^{232}\text{U} + e^-\]

These reactions cannot take place with neutrons below 6 MeV. The production of ^{232}U therefore can be much greater for fusion sources than for fission sources of neutrons.

Since ^{231}Pa accumulates time, the first set of reactions depends on exposure time even after ^{233}U is removed. Long exposure times are useful and the Pa needs to be left in during processing to remove ^{233}U. The second reaction also depends on time during which the ^{233}U accumulates to the value limited by the processing rate to remove the produced material.

As the concentration of ^{232}U in ^{233}U builds up, detection becomes easier owing to the 2.6 MeV gamma activity as can be seen in later figures. As the concentration reaches several hundred ppm, proximity to a quantity of uranium such as 5 kg becomes dangerous. Above 2.4% (24,000 ppm) the activity becomes high enough that the IAEA’s standard for reduced physical-protection or "self-protection" requirements (>100 rem/hr = 1 Sv/hr at 1 meter for 5 kg) are met [Ref. 6, Table 2]. If we scale their result to 1 m we get 76.2 rem/h rather than 100 rem/h as quoted for 2.4% ^{232}U / ^{233}U

\[127\text{rem/h} \times \frac{2.4\%}{1\%} \times \left(\frac{0.5}{1.0}\right)^2 = 76.2\text{rem/h}\]

This discrepancy is a topic to be resolved in the future.

III. SPECIFIC FISSION-SUPPRESSED ^{233}U FUSION BREEDING BLANKETS USING MOLTEN SALT

This breeding blanket is a well-documented design in [7,8] and shown in Fig. 4 & 5. A similar blanket design was done for a tokamak example [9] and could work equally well for other fusion concepts such as inertial fusion energy. These old studies calculated but did not emphasize ^{232}U production. The cylindrical shell blanket is 127 m long and fusion power is 3000 MW. The neutron wall load is 2 MW/m2 and blanket energy multiplication at beginning of life is 1.6. Fission especially of ^{233}U seems to increase the blanket energy multiplication. The first wall is at radius 1.5 m, 0.01 m of iron, the blanket extends from r=1.51 m to 2.1 and consists of 10 mm diameter beryllium spheres with molten salt circulating in steel tubes of 17 mm diameter. The molten salt is 70%LiF + 12% BeF$_2$ + 18% ThF$_4$, a 10 mm Fe wall extends to 2.11 m, graphite extends to 2.41 m. The blanket zone consists of 50vol% beryllium, 10% tubes, 0.8% Fe. The volume of molten salt inside the blanket is 85 m3. We assume the volume outside is the same. The amount of thorium is 358 tonnes.

Fission-suppressed fuel producing hybrids maximize safety and the amount of fuel production; uses helium cooling of beryllium pebbles to multiply neutrons and molten salt slowing flowing through tubes to both breed tritium and ^{233}U. Producing ^{233}U from thorium has both proliferation advantages and concerns. ^{232}U that inevitably accompanies ^{233}U production makes the material undesirable but not impossible for use in fission weapons.

TART [10] neutron transport calculations were done for this blanket with results projected in time, shown in Fig. 6. The blanket energy multiplication climbs from 1.6 to 2.1 as shown in Fig. 7 for the fluorination process rate of 10 m3/d chosen. The performance of this blanket is 0.6 ^{233}U atoms produced for each fusion event. Safety is enhanced by fission being suppressed, producing fewer fission products, and in the event of a failure the molten salt is passively drained to safe storage tanks. As mentioned in the previous section the Q should be >8 for a first approximation of economics. Typical parameters of this blanket are given in Table 1.
The assumption is the 233U and 232U are continuously removed by the fluorination process to keep the fission rate of 233U suppressed. However, it is important to allow 231Pa to accumulate as reaction path #3 of Fig. 2 is the overwhelmingly dominant route to making 232U.

Another blanket design in Ref. [1] uses 7Li for neutron multiplication followed by a molten salt zone and gives similar results as those in Fig. 6 with Be; the 232U/233U ratio levels off at 5% however, $M=1.3$.

TABLE 1. Be/molten salt blanket parameters.

<table>
<thead>
<tr>
<th></th>
<th>Beginning</th>
<th>Steady state</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{\text{nuclear}}, \text{MW}$</td>
<td>4440</td>
<td>5640</td>
</tr>
<tr>
<td>$P_{\text{fusion}}, \text{MW}$</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>$P_{\alpha \text{particle}}, \text{MW}$</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>$P_{\text{blanket}}, \text{MW}$</td>
<td>3840</td>
<td>5040</td>
</tr>
<tr>
<td>$P_{\text{electric}}, \text{MW}$</td>
<td>1380</td>
<td>1860</td>
</tr>
<tr>
<td>$P_{\text{wall load}}, 2 \text{ MW/m}^2$</td>
<td>127 m</td>
<td></td>
</tr>
<tr>
<td>Length of blanket</td>
<td>1.5 m</td>
<td></td>
</tr>
<tr>
<td>First wall radius</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>F^net</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>M^*</td>
<td>6380 kg 233U/yr at 80% capacity factor</td>
<td></td>
</tr>
<tr>
<td>Total cost</td>
<td>$4870 M$ (1982$)</td>
<td></td>
</tr>
</tbody>
</table>

* F_{net} is the fissile atoms bred/triton consumed. M is the energy released in the blanket per triton consumed divided by 14 MeV. More recent studies give $M=2.1$. Previously fission of 233U must have been ignored or a much higher processing rate used.

Concentration ratios versus exposure time for the Be/MS case.

Fig. 4. shows a blanket submodule designed both for a tandem mirror [7,8] and a tokamak [9] with pebbles and helium cooling.

Fig. 5. shows the submodule adapted to mirror geometry making an integrated package of first wall, blanket, shield and solenoidal magnet.

Fig. 7. Blanket multiplication increases with burn time.

IV. 232U NONPROLIFERATION FEATURES
In this section we describe in some detail the several features of ^{232}U that tend to discourage use in ^{233}U weapons. These are strong gamma rays at 2.6 MeV, strong decay heat from alpha decay, gamma rays degrading high explosive and possibly other effects.

The heat rate and gamma rate are shown in Fig. 8 & 9. They are based on one atom of ^{232}U. We assume at time zero the ^{232}U has just been separated and therefore the ^{232}U content is zero. Notice that the heat rate is finite at the beginning but the gamma rate starts at zero while the ^{238}Th builds up to a peak in about nine years. The gamma rate peaks at 0.023 MeV/y and the heating peaks at 0.39 W/kg.

![Gamma rate in MeV per atom of ^{232}U](image1)

Fig. 8. Gamma rate in Mev per atom of ^{232}U.

![Heat rate in W/kg of ^{232}U](image2)

Fig. 9. Heat rate of ^{232}U in watts per kg.

The half-life of ^{233}U is 159,000 years and its energy release is 4.9 MeV. The heat rate of pure ^{233}U is 0.28 W/kg as is shown:

\[
P = \frac{(\text{heat rate in } \text{MeV/atom}\times\text{U}^{233} \times \text{year})}{(M(\text{kg}\times\text{U}^{233}))}\frac{1}{(1.6021\times10^{-19}/eV\times10^4\times eV/\text{MeV})}\frac{1}{365.25\times24\times3600\times y} = 0.28\text{ W/kg}
\]

The amount of ^{232}U to produce the same heat as that of ^{238}Pu is 9.4 times less after 9 years of build up because ^{238}Pu has one alpha in its decay chain, whereas ^{232}U has six alphas.

The heat rate of ^{232}U is like that of ^{238}Pu on steroids:

\[
\text{heat rate/}kg\text{ of } U^{232} + \text{heat rate of } Pu^{238} = \frac{238}{232}\left[\frac{Nu^{232}}{\tau_{232}} + \frac{N^{228}\text{Th}}{\tau_{228}}(E_{\text{heat}} - E_{\text{th}})\right]
\]

\[
\frac{Nu^{232}}{\tau_{232}} + \frac{N^{228}\text{Th}}{\tau_{228}}(E_{\text{heat}} - E_{\text{th}})\]

\[
\frac{Pu^{238}}{\tau_{238}} + \frac{N^{228}\text{Th}}{\tau_{228}}E_{238}
\]

V. RADIATION DAMAGE TO HIGH EXPLOSIVE (HE)

The high explosive HMX commonly used in nuclear explosives can withstand up to 1.0×10^8 r [11]. The effects of this radiation dose are gas evolution, crumbling and other undesirable effects. A r (roentgen) is equal to 0.00877 J/kg. 100 rad=1 gray (Gy) = 1 J/kg. 1 r = 0.877 rad = 0.00877 gray. 100 rem = 1 Sv. For our purposes a rad, a rem and an r are pretty closely equal for gamma radiation.

We now discuss the consequences of various levels of $^{232}\text{U} / ^{233}\text{U}$ on gamma dose rate from a sphere of ^{233}U of 5 kg reflected by beryllium that would be just critical. At $^{232}\text{U} / ^{233}\text{U} = 0.024$ the dose rate at 1 m is 100 rem/h after 1 year from separation [6]. We have normalized the dose rate of Fig. 2 to 100 rem/h at 1 year and plotted the result in Fig. 10.

At 0.04 m (contact) the dose rate would be $100/0.04^2 = 6.3\times10^4$ rad/h assuming a rem=rad shown in Fig. 11. High explosive can tolerate about 100 Mr before degradation. $10^8/6.3\times10^4 = 1600$ hours to accumulate the tolerable dose for 1 year after separation of ^{232}U. At nine years the dose rate is 2.9 times that at 1 y. The time to degrade or shelf life would be 550 hours (Fig. 11).

A more proper way to assess the dose required to damage high explosive (HE) is to integrate the function of Fig. 8, which is shown in Fig. 10 and 11.

\[
\text{Dose} = \int_0^{\text{time U separation, years}} \frac{N^{224}\text{Ra}}{\tau_{224}}E_{\text{gamma}}\text{dt}
\]

Fig. 10. Gamma dose rate from 5 kg of ^{233}U with 2.4% ^{232}U.
Fig. 11. Contact dose in rads from 5 kg with 0.1% & 2.4% \(^{232}\text{U}\) versus time.

The HE damages in 3.4 and 0.58 years for 0.1 and 2.4% \(^{232}\text{U}\) from Fig. 11. The \(^{232}\text{U}\) concentration ratio is proportional to gamma dose or damage for a fixed time.

Heat generation

Based on the work of Kang and von Hipple [6] for critical mass 5, 25, 60, 130 and 430 kg corresponding to isotopic enrichment, \(^{233}\text{U}/(^{232}\text{U} +^{238}\text{U})\) of 0.13, 0.2, 0.5 and 1, we calculate the heat generation rate shown in Fig. 12 and 13.

![Heat rate graph](image)

Fig. 12. Heat rate in watts from a critical mass versus \(^{232}\text{U}\) concentration at time of separation of uranium.

We calculate the surface temperature of a sphere containing 5 kg of \(^{233}\text{U}\) by two heat transfer mechanisms, convection in air and radiation. The sphere is chosen to be 0.05 and 0.5 m radius for two cases. For a \(^{233}\text{U}\) bare sphere at 10 W heat release and 0.05 m radius the temperature is warm to the touch. Above 100 W the temperature is high and rising almost linearly with increasing power. With a sphere of radius 0.5 m surrounding the same mass of \(U\) the surface temperature rise would be small. Radiation heat transfer using the heat rates shown in Fig. 12 & 13 gives the results shown in Fig. 14.

![Temperature graph](image)

Fig. 14. Surface temperature for radiation heat transfer.

The gamma radiation to personnel, damage to HE and heat generation all argue against use in nuclear weapons, especially at high concentrations of \(^{232}\text{U}/^{233}\text{U} > 2.4\%\).

Another effect to be considered is the ejection of particulates caused by alpha particle emitter recoil [12]. Six alphas for each \(^{232}\text{U}\) compared to one for \(^{238}\text{Pu}\) makes this phenomenon six times stronger.

VI. NUMBER OF FISSION REACTORS SUPPORTED BY EACH FUSION BREEDER

The MSR-LFTR make up fuel is 185 kg \(^{233}\text{U}/\text{GW} \cdot \text{y}\) (for \(\eta_{\text{Th}}=0.4\) this is 74 kg \(^{233}\text{U}/\text{GW}_{\text{nuclear}} \cdot \text{y}\)) with a conversion ratio, CR=0.8 appropriate to a Th-\(^{233}\text{U}\) cycle that would rely on safeguards to address proliferation issues as well as being supplied with fuel spiked with \(^{232}\text{U}/^{233}\text{U} \sim 5\%\).

An MSR operated with \(^{235}\text{U}\) fully denatured with \(^{238}\text{U}\) required 85 kg \(^{235}\text{U}/\text{GW}_{\text{nuclear}} \cdot \text{y}\) makeup fuel. Thorium burning reactors can be designed with CR
varying up to 1 or slightly higher. Makeup fuel is proportional to 1-CR.

The 233U cycle would rely on safeguards to address proliferation issues as well as being supplied with fuel spiked with 232U / 233U up to 5%.

The fuel production from the fission-suppressed fusion breeder is 2660 kg/1000 MW$_{\text{fusion}}$. The ratio of nuclear power to fuel production is 1.88, so the production becomes 1420 kg/GW$_{\text{nuclear}}$. One such fusion breeder can fuel 19 equal nuclear power molten salt reactors with CR=0.8.

The startup inventory of 233U for MSR is typically 1.5 to 3 kg/MWe. At η_{th}=0.4 this is 600 to 1200 kg 233U /GW$_{\text{nuclear}}$. The fusion breeder could supply with initial fissile inventory each year between 2.2 and 4.4 molten salt reactors of the same nuclear power.

VII. SUMMARY AND DISCUSSION

In this paper we have shown the role that 233U can play in nonproliferation of the thorium fuel cycle. However, it is far from perfect and strong safeguards should be fully employed with the thorium fuel cycle. The molten salt state of the fuel in both the fusion and the fission system lend themselves to processing at low rates to keep excess fissile material to a minimum, which should aid nonproliferation. Another feature of molten salt is that under a wide variety of adverse conditions the fuel can be drained to passively cooled holding tanks.

VIII. CONCLUSIONS

Fusion’s first and early application could be to produce fuel to start up thorium cycle molten salt fission reactors and supply makeup fuel.

IX REFERENCES